Applications Open for Academic Session 2025-26
Click Here
Fee Payment (EMI)

B.Sc. (Hons./by Research) Data Science & Analytics

B.Sc. (Hons./by Research) Data Science & Analytics

Sharda School of Basic Sciences & Research (SBSR)

  • Programme Code

    SBR0308

  • Level

    Graduate

  • Duration

    4

About the Programme

BSC Data Science & Analytics with Research
 

Course Fee
For National Students
1st Year 113300 2nd Year 116699 3rd Year 120200 4th Year 123806
For International Students
Fee Per Semester Fee Per Year
NA 3400*
Programme Structure

S. No.

Course Code

Course Name

Teaching Load

Credits

Pre-Requisite/ Co-Requisite

Type of Course:

1. CC     2. DSE

3. OPE 4. SEC

5. AEC 6. VAC

  7.Project

 

THEORY

 

L

T

P

TOTAL

(hrs)

 

 

 

1.

MSM101

Foundation Course in Mathematics

4

0

0

4

4

Basic Mathematics up to 10+2

CC

2.

CMS102

Descriptive Statistics

3

0

0

3

3

Basic Mathematics up to 10+2

OPE

3.

CSE113

Programming for Problem Solving

3

0

0

3

3

 

DSE

(Multi/Inter-discpli)

4.

VOM103

Essential Excel Skills for Business

0

0

6

6

3

 

SEC

5.

ARP101

Communicative English-1

1

0

2

3

2

 

AEC

6.

VAC103

Environmental Management

3

0

0

3

3

 

VAC

 

PRACTICALS

 

 

 

 

 

 

 

 

7.

CMS151

Foundation Course in Mathematics Lab

0

0

2

2

1

Co-requisite MSM101

CC

8.

CSP113

Programming for Problem Solving Lab

0

0

2

2

1

Co-requisite CSE113

DSE

(Multi/Inter-discpli)

TOTAL CREDITS

 

 

 

 

20

 

 

S. No.

Course Code

Course Name

Teaching Load

Credits

Pre-Requisite/ Co-Requisite

Type of Course:

1. CC     2. DSE

3. OPE 4. SEC

5. AEC 6. VAC

  7.Project

 

THEORY

 

L

T

P

TOTAL

(hrs)

 

 

 

1.

CMS131

Matrix Analysis and Linear Algebra

4

0

0

4

4

Pre-requisite MSM101

CC

2.

CMS132

Mathematical Expectations & Probability Distributions

3

0

0

3

3

Pre-requisite CMS102

OPE

3.

CSE242

Data Structures

3

0

0

3

3

Pre-requisite CSE113

CC

4.

VOM104

Advanced Excel Skills for Business

0

0

6

6

3

Pre-requisite VOM103

SEC

5.

ARP102

Communicative English-2

1

0

2

3

2

Pre-requisite ARP101

AEC

6.

VAC110

Yoga for Holistic Health

0

1

4

5

3

 

VAC

 

PRACTICALS

 

 

 

 

 

 

 

 

7.

CMS171

Matrix Analysis and Linear Algebra Lab

0

0

2

2

1

Co-requisite CMS131

CC

8.

CSP242

Data Structures Lab

0

0

2

2

1

Co-requisite CSE113

CC

TOTAL CREDITS

 

 

 

 

20

 

 

S. No.

Course Code

Course Name

Teaching Load

Credits

Pre-Requisite/ Co-Requisite

Type of Course:

1. CC     2. DSE

3. OPE 4. SEC

5. AEC 6. VAC

  7.Project

 

THEORY

 

L

T

P

TOTAL

(hrs)

 

 

 

1.

MSM312

Discrete Mathematics

3

1

0

4

4

Pre-requisite MSM101

DSE

2.

BDA215

Operations Research

3

0

0

3

3

Pre-requisite MSM101

OPE

3.

BDA216

Statistical Inference

4

0

0

4

4

Pre-requisite CMS132

CC

4.

BDA217

Data Preparation and Data Cleaning

3

0

0

3

3

Pre-requisite CMS132

CC

5.

VOM203

Basic Excel Modelling

0

0

6

6

3

Pre-requisite VOM104

SEC

6.

ARP207

Logical Skill Building & Soft Skills

0

1

2

3

2

Pre-requisite ARP102

AEC

 

PRACTICALS

 

 

 

 

 

 

 

 

7.

BDA261

Statistical Inference Lab

0

0

2

2

1

Co-requisite BDA216

CC

8.

BDA262

Data Preparation and Data Cleaning Lab

0

0

2

2

1

Co-requisite BDA217

CC

9.

RBL001

Research Report Writing-I

(RBL-1)

0

0

2

2

0

Pre-requisite ARP102

Project

(Non-graded Qualifying)

TOTAL CREDITS

 

 

 

 

21

 

 

S. No.

Course Code

Course Name

Teaching Load

Credits

Pre-Requisite/ Co-Requisite

Type of Course:

1. CC     2. DSE

3. OPE 4. SEC

5. AEC 6. VAC

  7.Project

 

THEORY

 

L

T

P

TOTAL

(hrs)

 

 

 

1.

BDA218

Data Ware Housing & Data Mining

3

0

0

3

3

Pre-requisite BDA217

CC

2.

BDA202

Database Management Systems

4

0

0

4

4

Pre-requisite MSM312

CC

3.

BDA214

Sampling Theory

4

0

0

4

4

Pre-requisite BDA216

DSE

4.

ARP306

  Campus to Corporate

0

1

2

3

2

Pre-requisite ARP207

AEC

5.

OPE

Open Elective-1

3

0

0

3

3

 

OPE

 

PRACTICALS

 

 

 

 

 

 

 

 

6.

BDA270

Data Ware Housing & Data Mining Lab

0

0

2

2

1

Co-requisite BDA218

CC

7.

BDA271

Database Management Systems Lab

0

0

2

2

1

Co-requisite BDA202

CC

8.

BDA272

Sampling Theory Lab

0

0

2

2

1

Co-requisite BDA214

DSE

9.

RBL002

Research Based Learning-II

(RBL-2)

0

0

2

2

0

Pre-requisite RBL001

Project

(Non-graded Qualifying)

TOTAL CREDITS

 

 

 

 

19

 

 

S. No.

Course Code

Course Name

Teaching Load

Credits

Pre-Requisite/ Co-Requisite

Type of Course:

1. CC     2. DSE

3. OPE 4. SEC

5. AEC 6. VAC

  7.Project

 

THEORY

 

L

T

P

TOTAL

(hrs)

 

 

 

1.

BDA346

Artificial Intelligence

5

0

0

5

5

Pre-requisite BDA218

CC

2.

BDA303

Machine Learning

4

0

0

4

4

Pre-requisite BDA218

CC

3.

BDA319

Regression Analysis

3

0

0

3

3

Pre-requisite BDA214

CC

4.

BDA320/

BDA321

Advanced Statistical Analysis/

Experimental Design

2

0

0

2

2

 

DSE

(Multi/Inter-discpli)

 

PRACTICALS

 

 

 

 

 

 

 

 

5.

BDA355

Machine learning Lab

0

0

2

2

1

Co-requisite BDA303

CC

6.

BDA356

Regression Analysis Lab

0

0

2

2

1

Co-requisite BDA319

CC

7.

INC001

Industry Connect

0

0

4

4

2

 

Project

8.

RBL003

Research Based Learning-III

(RBL-3)

0

0

2

2

1

Pre-requisite RBL002

Project

9.

BDA359/

BDA363

Advanced Statistical Analysis Lab/

Experimental Design Lab

0

0

2

2

1

 

DSE

(Multi/Inter-discpli)

TOTAL CREDITS

 

 

 

 

20

 

 

S. No.

Course Code

Course Name

Teaching Load

Credits

Pre-Requisite/ Co-Requisite

Type of Course:

1. CC     2. DSE

3. OPE 4. SEC

5. AEC 6. VAC

  7.Project

 

THEORY

 

L

T

P

TOTAL

(hrs)

 

 

 

1.

CMS331

Numerical Methods

4

0

0

4

4

Pre-requisite CMS131

CC

2.

BDA322

Statistical Simulation

4

0

0

4

4

Pre-requisite BDA319

CC

3.

BDA323

Multivariate Data Analysis

3

0

0

3

3

Pre-requisite BDA319

CC

4.

BDA325

Deep Learning

3

0

0

3

3

Pre-requisite BDA303

OPE

 

PRACTICALS

 

 

 

 

 

 

 

 

5.

CMS371

Numerical Methods Lab

0

0

2

2

1

Co-requisite CMS331

CC

6.

BDA360

Statistical Simulation Lab

0

0

2

2

1

Co-requisite BDA322

CC

7.

BDA361

Multivariate Data Analysis Lab

0

0

2

2

1

Co-requisite BDA323

CC

8.

CCU108

Community Connect

0

0

4

4

2

 

Project

(Multi/Inter-discpli)

9.

RBL004

Research Based Learning-IV

(RBL-4)

0

0

2

2

1

Pre-requisite RBL003

Project

TOTAL CREDITS

 

 

 

 

20

 

 

S. No.

Course Code

Course Name

Teaching Load

Credits

Pre-Requisite/ Co-Requisite

Type of Course:

1. CC     2. DSE

3. OPE 4. SEC

5. AEC 6. VAC

  7.Project

 

THEORY

 

L

T

P

TOTAL

(hrs)

 

 

 

1.

MDA104

Next Generation Databases

4

0

0

4

4

Pre-requisite BDA346, 303, 323

CC

2.

MDA109

Big Data Analytics

4

0

0

4

4

Pre-requisite BDA323

CC

3.

MDA110/

MDA112

Time Series, Forecasting and Index Number/

Econometrics

3

0

0

3

3

 

DSE/CC*

4.

MDA111/

MDA113

Non-Parametric Statistical Inference/Survival Analysis

4

0

0

4

4

 

DSE/CC*

5.

OPE

Open Elective-1

4

0

0

4

4

 

OPE

 

PRACTICALS

 

 

 

 

 

 

 

 

6.

MDA155/

MDA156

Time Series, Forecasting and Index Number Lab/

Econometrics Lab

0

0

2

2

1

 

DSE/CC*

TOTAL CREDITS

 

 

 

 

20

 

 

S. No.

Course Code

Course Name

Teaching Load

Credits

Pre-Requisite/ Co-Requisite

Type of Course:

1. CC     2. DSE

3. OPE 4. SEC

5. AEC 6. VAC

  7.Project

 

THEORY

 

L

T

P

TOTAL

(hrs)

 

 

 

1.

MDA107

Advanced Big Data and Text Analytics

4

0

0

4

4

Pre-requisite MDA109

CC

2.

MDA114

Bayesian Data Analysis

4

0

0

4

4

Pre-requisite BDA322, 323

CC

3.

MDA117

Computational Intelligence

4

0

0

4

4

Pre-requisite BDA303,322,346,

CC

4.

MDA115/

MDA116

Demography/

Statistical Quality Control

4

0

0

4

4

 

DSE/CC*

5.

OPE

Open Elective-2

4

0

0

4

4

 

OPE

TOTAL CREDITS

 

 

 

 

20

 

 

Programme Curricula
S.No. Academic year Curricula Link

1

2023-24 View Details
Eligibility Criteria
For National Students
  • Sr. secondary (10+2) with minimum 55% marks in PCM/PCB/Humanities with Maths or Applied Maths/Commerce with Maths or Applied Maths
  • Proficiency in English communication
For International Students The eligibility criterion for all programs for international applicants is minimum 50% in the qualifying examination and having studied the pre-requisite subjects for admission in to the desired program.

Take the next step towards a career in basic sciences.

Apply Now