

School of Basic Sciences and Research Department of Life Science

Program Structure: Three Year UP HigherEducation for Food Science and Technology Discipline

AY: 2021-22 Onwards

1.1 Vision, Mission and Core Values of the University

Vision of the University

To serve the society by being a global University of higher learning in pursuit of academic excellence, innovation and nurturing entrepreneurship.

Mission of the University

- 1. Transformative educational experience
- 2. Enrichment by educational initiatives that encourage global outlook
- **3.** Develop research, support disruptive innovations and accelerate entrepreneurship

Creative Campaign can be TEDs: This is guiding principle for promotion and wide circulation among various stakeholders. Guidelines: Similar Mnemonics can be designed by schools.

- Integrity
- Leadership
- Diversity
- Community

Note: Detailed Mission Statements of University can be used for developing Mission Statements of Schools/ Departments.

1.2 Vision and Mission of the School

Vision of the School

Achieving excellence in the realm of basic and applied

sciences to address the global challenges of evolving

society

Mission of the School

- 1. To equip the students with knowledge and skills in basic and applied sciences
- 2. Capacity building through advanced training and academic flexibility.
- **3.** To establish centre of excellence for ecologically and socially innovative research.
- 4. To strengthen inter-institutional and industrial collaboration forskill development and global employability.

Vision of the Department

To acquire and impart knowledge of Food Science and Technology so as to build capacity for addressing current global challenges

Mission of the Department

1. To train and transform students into technical researchers/ professionals who are able to integrate theoretical knowledge and analytical skills in diverse areas of Food Science.

2. To make students and faculties updated with advance techniques and to introduce the students to dynamic environment of food science.

3. To conduct cutting-edge interdisciplinary research.

4. Introduction of various skill development and entrepreneurship courses to enhance the employability and providing opportunities for industry academia collaboration.

1.4 Programme Educational Objectives (PEO)

Program educational objectives are broad statements that describe the career and professional accomplishments that the program is preparing graduates to achieve.

PEO1: The graduate students will understand of various food preservation techniques and concepts and phenomena in the minds of students through theoretical and practical knowledge.

PEO2: Graduate students will upgraded with new discoveries in Food Science and inculcate continuous learning and self-improvement so that students are motivated for higher studies and research.

PEO3: Graduate students will be taught various Food Standards and techniques as well as applications of these techniques for betterment of society and environment.

PEO4: Graduate students will industry- or academia-ready by developing independent thinking, good communication and scientific skills and to acquaint them with professional ethics so that they can work well in an industrial or academic environment.

PEO5: Graduate students will understand interdisciplinary nature of research in Food Sciences/Food Safety by assigning them different research projects/ case studies/presentations.

PEO Statements	School	School	School	School
	Mission 1	Mission 2	Mission 3	Mission 4
PEO1	3	2	-	-
PEO2	3	2	2	-
PEO3	3	3	2	1
PEO4	2	3	2	2
PEO5	3	2	2	2

1.4.1 Map PEOs with Mission Statements:

1.4.1.1 Map PEOs with Department Mission Statements:

PEO Statements	School	School	School	School
	Mission 1	Mission 2	Mission 3	Mission 4
PEO1	3	1	1	1
PEO2	3	2	2	-
РЕОЗ	2	2	2	2
PEO4	3	-	2	2
PEO5	3	2	3	2

PO1: Knowledge: Students will develop a sound understanding the Food Preserve Techniques and processes.

PO2: Skill Set Development: The student will be skilled in various Food Quality Analysis techniques that will enhance the employability of the students.

PO3: Oral Communication and Scientific Writing: The students will be able to demonstrate good oral communication. Students will also be knowledgeable about writing technical (project report and reviews) content.

PO4: Environment and Sustainable Development: Student will be able to realize the effect of human malpractices on environment and the need and importance of sustainable development.

PO5: Ethics, Independent Thinking and Team Work: The students will develop professional ethics and also gain knowledge about various ethical issues associated with Food Science and Technology. Students will learn to think and analyze a problem independently while at the same time realizing the importance of team work in carrying out successful research/ projects/ presentations.

1.4.3. Mapping of Program Outcome Vs Program Educational Objectives

Mapping	PEO1	PEO2	PEO3	PEO4	PEO5
PO1	3	2	2	2	2
PO2	3	2	2	3	2
PO3	1	1	-	3	2
PO4	1	2	3	-	2
PO5	1	2	-	3	2

B. Program Structure

- **1. TITLE:** Three Year UP Higher Education Program Structure for Food Science and Technology Discipline
- 2. DURATION OF THE COURSE: 3 Years

3. YEAR OF IMPLIMENTATION

This syllabus will be implemented for the session academic year 2021-22 onwards.

4. PREAMBLE

Total Credits- 150

Minimum credit required for multiple entry and exit:

	01 st Year	50
Total credit of the 03 year UG Program for year wise multiple entry and exit	02 nd Year	100
	03 rd Year	150

Total Number of Semesters – 06 (Two

semesters per year)

Total Number of Theory subjects - 27

Total number of practical: 22

Vocational Course: 4

Co-Curricular Course: 6

Internship: 01

Research Project: 01

Community Connect: 01

Year	Semester	Course Codes from	Course Code	Paper Title	Theory	Credits
		UPHE			/Practical	
			BFS101	Fundamental of Food Technology	Theory	4
			BFS102	Food Biomolecules	Theory	4
				Chemistry - I (L)	Theory	4
	I			Vocational Course	Practical	3
		Z010101T	COC101	Food, Nutrition and Hygeine	Theory/Practical	2
			BFP101	Food Technology Lab	Practical	2
			BFP102	Food Biomolecules Lab	Practical	2
1 st				Chemistry Lab - I	Practical	2
L				Total Credits		23
			BFS201	Processing Technology of Cereals, Pulses Legumes and Oilseeds	Theory	4
			BFS202	Technology of Fruits and Vegetables	Theory	4
	п			Chemistry - II (L)	Theory	4
				Physics – I (L)	Theory	4
				Vocational Course	Practical	3
		Z020201	COC201	First aid and Health	Theory/Practical	2
			BFP201	Processing Technology of Cereals, Pulses	Practical	2
				Legumes and Oilseeds Lab		
			BFP202	Technology of Fruits and Vegetables Lab	Practical	2
				Chemistry Lab - II	Practical	2
				Total Credits		27
			BFS301	Food Chemistry	Theory	4
			BFS302	Unit Operations in Food Processing	Theory	4
				Chemistry - III (L)	Theory	4
				Vocational course	Practical	3
	III	Z030301	COC301	Human Values and Environmental Studies	Theory/Practical	2
			BFP301	Food Chemistry and Food Processing Lab	Practical	2
			BFP302	Food Engineering Lab	Practical	2
and				Chemistry Lab - III	Practical	2
2				Total Credits		23
			BFS401	Dairy Technology	Theory	4
			BFS402	Technology of Meat, Poultry and Sea Foods	Theory	4
				Chemistry - IV (L)	Theory	4

BSc Food Science and Technology Course Structure

]			Physics – II (L)	Theory	4
				Vocational Course	Practical	3
		Z040401	COC401	Physical Education end Yoga	Theory/Practical	2
	IV		BFP401	Dairy Technology Lab	Practical	2
			BFP402	Technology of Animal Foods Lab	Practical	2
				Chemistry Lab - IV	Practical	2
				Total Credits		27
			BFS501	Food Microbiology	Theory	4
			BFS502	Principles of Food Preservation	Theory	4
			BFS503	Waste Management in Food Industries	Theory	4
			BFS504	Food Engineering	Theory	4
	V	Z050501	COC501	Analytic Ability and Digital Awareness	Theory/Practical	2
			CUC501	Community Connect	Practical	2
			BFP503	Summer internship of term IV (1) (Will be done	Practical	1
				after 4th Sem.)		
			BFP501	Food Microbiology Lab	Practical	2
			BFP502	Food Preservation Lab	Practical	2
ard				Total Credits		25
5			BFS601	Food Biotechnology	Theory	4
			BFS602	Research Methodology in Food Science	Theory	4
			BFS603	Food Safety and Regulations	Theory	4
			BFS604	Food Enzymology		4
	VI			Communication Skills and Personality	Theory	2
				Development		
			BFP601	Food Biotechnology Lab	Practical	2
			BFP602	Research Methodology Lab	Practical	2
			BFP603	Research Project	Project	3
				Total Credits		25

		9	Semester wise sub	ojects as per NEP)		
					Credit		(MinMax.Total Credits) After completion{Minimum Credits} [Max Duration in years]
No.		Course Name	Subject	Theory/Practical	Total	Min Max.of the semester/ year	
1		Fundamental of Food Technology	Major I	Theory	04		
2	-	Food Technology Lab	Major I	Practical	02		
3		Food Biomolecules	Major II	Theory	04		
4		Food Biomolecules Lab	Major II	Practical	02		
5	Semester 1	Chemistry – I (L)	Major III	Theory	04	23-29	
6		Chemistry Lab - I	Major III	Practical	02		
7		Vocational	Vocational	Practical	03		
8		Food, Nutrition and Hygiene	Co-curricular	Theory	02		
		Total credit			23		
1		Processing Technology of Cereals, Pulses, Legumes and Oilseeds	Major I	Theory	04		(50-52) {46}
2		Processing Technology of Cereals, Pulses, Legumes and Oilseeds Lab	Major I	Practical	02		[4] Certificate Course in Faculty
3		Technology of Fruits and Vegetables	Major II	Theory	04		
4		Technology of Fruits and	Major II	Practical	02		
	Semester 2	Vegetables Lab				23-29	
5	_	Chemistry – II (L)	Major III	Theory	04	_	
6	_	Chemistry Lab - II	Major III	Practical	02	_	
7	_	Physics – I (L)	Minor/ Elective	Theory	04	_	
8		Vocational Course	Vocational	Practical	03		
9		Health and Hygiene	Co-curricular	Theory	02		
		Total Credit	1	1	27		
1	4	Food Chemistry	Major I	Theory	04	4	
2	Semester 3	Food Chemistry and Food	Major I	Practical	02	23-29	
		Processing Lab					
3		Unit Operations in Food Processing	Major II	Theory	04		

4		Food Engineering Lab	Major II	Practical	02		
5		Chemistry - III (L)	Major III	Theory	04		
6		Chemistry Lab - III	Major III	Practical	02		
7		Vocational course	Vocational	Practical	03		
8		Physical Education and Yoga	Co-curricular	Theory	02		100-104
		Total Credit			23		{92}
1		Dairy Technology	Major I	Theory	04		[7]
2		Dairy Technology Lab	Major I	Practical	02		
3		Technology of Meat, Poultry and Sea Foods	Major II	Theory	04		Diploma in Faculty
4		Technology of Animal Foods Lab	Major II	Practical	02		
5		Chemistry - IV (L)	Major III	Theory	04		
6	Semester 4	Chemistry Lab - IV	Major III	Practical	02	23-29	
7		Physics – II (L)	Minor/ Elective	Theory	04		
8		Vocational Course	Vocational	Practical	03		
9		Human Values and Environmental Studies	Co-curricular	Theory	02		
		Total Credit			27		
1		Food Microbiology	Major I	Theory	4		
2		Waste Management in Food Industries	Major I	Theory	4		
3		Food Microbiology Lab	Major I	Practical	2		
4		Principles of Food Preservation	Major II	Theory	4		
5		Food Engineering	Major II	Theory	4		
6	Semester 5	Food Preservation Lab	Major II	Practical	2	25	(150, 154)
7		Analytic Ability and Digital Awareness	Co-curricular	Theory	2		(150-154) {138)
8		Community Connect	Survey/Project	Practical	2		[10] Bachelor in Faculty
9		Summer internship of term IV (1) (Will be done after 4th Sem.)	Industrial Training	Practical	1		Dachelor in Faculty
	1	Total Credits		·	25		
1		Food Biotechnology	Major I	Theory	4		
2	1	Food Safety and Regulations	Major I	Theory	4		
3	Semester 6	Food Biotechnology Lab	Major I	Practical	2	25	
4]	Research Methodology in Food Science	Major II	Theory	4		

5		Food Enzymology	Major II	Theory	4		
6		Research Methodology Lab	Major II	Practical	2		
7		Communication Skills and	Co-curricular	Theory	2		
		Personality Development					
8		Research Project	IndustrialTraining/	Project	3		
			Survey/ Project				
		Total Credits			25		
1		Bakery, Confectionary and	Major I	Theory	4		
		Extruded Products					
2		Bakery, Confectionary and	Major I	Practical	4		
		Extruded Products Lab					
3		Technology of Spices and	Major I	Theory	4		
	Semester 7	Functional Food				26-32	
4		Food Quality Analysis	Major I	Theory	4		
5		IPR in Food Industry	Major I	Theory	4		
6		Research Project	IndustrialTraining/	Project	6		(206-212)
			Survey/ Project				{194)
		Total Credits					[12]
1		Food Toxicology	Major I	Theory	4		Bachelor research in faculty
2		Food Toxicology Lab	Major I	Practical	4		
3		Fermentation Technology	Major I	Theory	4		
4		Food Packaging	Major I	Theory	4	26.22	
5	Semester 8	Nutrition Biochemistry	Major I	Theory	4	20-52	
6]	Physics – III (L)	Minor/Elective	Theory	4]	
7]	Research Project	IndustrialTraining/	Theory	6		
			Survey/ Project				
		Total credit			30		

		-				<u>.</u>	-				
								Industrial Training/			
		Subject I	Subject II	Subject III	Subject IV	Vocational	Co- Curricular	Survey/Project			
		Major	Major	Major	Minor/ Elective	Minor	Minor	Major	Credits		
		Credits	Credits	Credits	Credits	Credits	Credits	Credits		{Minimum Credits} [Max Duration in years]	
		4 + 2	4 + 2	4 + 2	4	3	2				
Year	Sem.	Own Faculty	Own Faculty	Any Faculty	Other Department/ Faculty	Vocational Faculty	Co- Curricular Course	Inter/Intra Faculty related to Main Subjects	Total		
		Fundamental of Food Technology (L)	Food Biomolecules (L)	Chemistry - I (L)		As per choice of	Food, Nutrition	1	23	(50) {46}	
	-	Food Technology Lab (P)	Food Biomolecules Lab (P)	Chemistry Lab - I (P)		student	andHygiene				
1		Processing Technology of Cereals, Pulses, Legumes and Oilseeds (L)	Technology of Fruits and Vegetables (L)	Chemistry - II (L)	Physics – I (L)	As per choice of			27		[4] Certificate Course
	"	Processing Technology of Cereals, Pulses, Legumes and Oilseeds Lab (P)	Technology of Fruits and Vegetables Lab (P)	Chemistry Lab - II (P)		student	Health and Hygiene		27		
		Food Chemistry	Unit Operations in Food Processing	Chemistry - III (L)		As per choice of	Physical			(100) {96} [7]	
2		Food Chemistry and Food Processing Lab	Food Engineering Lab	Chemistry Lab – III (P)		student	Education and Yoga		23		
		Dairy Technology	Technology of Meat, Poultry and Sea Foods	Chemistry - IV (L)	Physics – II (L)		Human values		27	Diploma	
	IV -	Dairy Technology Lab	Technology of Animal Foods Lab	Chemistry Lab - IV (P)		student	and Environmental Studies		21		
		Food Microbiology	Principles of Food Preservation				Analytical	Community			
	v	Waste Management in Food Industries	Food Engineering				Abilityand	Connect (2) +	25		

Three years UG programme structure of Food Science and Technology as per UP Higher Education

3		Food Microbiology Lab	Food Preservation Lab		Digital awareness	Summer internship of term IV (1)		(150) {146} [10] Degree in Bachelo
		Food Biotechnology	Research Methodology in Food Science		Communicatio			of Science
	VI	Food Safety and Regulations	Food Enzymology		n Skills and Personality	Research Project	25	
		Food Biotechnology Lab	Research Methodology Lab		Development			

Programme/Class: Certificate	Year: First	Semester: I							
Subject: Food Science and Technology									
Course Code:	Course Title: Fundamental of Food Te	chnology							

Course outcomes:

After successful completion of this course students will be able to:

- CO1: Discuss historical development of food science, technology, and the effects of processing on foods.
- CO2: Explain the processing of cereals, pulses, milk and meat products.
- CO3: Explain the thermal and non-thermal methods of food processing.
- CO4: Define potential applications of processing and preservation in food technology.
- CO5: Discuss use of microbes in food industries.
- CO6: Explain the processing, nutritional values and packaging of food product.

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0

Unit	Торіс	Total No. of Lectures (60)
Ι	 General Introduction Historical development of Food Science and Technology Evolution of Food Processing Introduction to various branches of Food Science and Technology 	8
Π	 Introduction to Plant and Animal derived foods Classification, processing and nutritional value: Plant derived: Cereals, pulses, fruits, vegetables Classification, processing and nutritional value: fats and oils; Animal derived: Meat, poultry, fish, milk and milk products Beneficial microbes in Food 	15
III	 Introduction to Food processing and preservation Minimal processing of foods with thermal and non thermal methods; Ohmic heating and High Pressure processing; Freezing, drying and dehydration and irradiation procedures Safety criteria in minimally processed foods Minimal processing in practice fruits and vegetables, seafood-effect on quality, Future developments 	15

IV	Introduction to Food packaging	10
	 Objectives of packaging flexible packaging Brief description of packaging of frozen products, dried products, fats and oils and thermally processed foods 	
v	Properties of the packaging materials	12
	 Use of low density polyethylene, ethylene acrylic acid, ethylene methacrylic acid, ionomers High density polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, ethylene vinyl alcohol, polystyrene Polyethylene terephthalate or nylon, ethylene vinylacetate for food packaging Polyethylene terephthalate or nylon, ethylene vinyl acetate for food packaging 	
Suggested I	Readings:	
1. Mai	nay, S. & Shadaksharaswami, M., Foods: Facts and Principles, NewAge Pu	blishers, 2004
2. B.	Srilakshmi, Food science, New AgePublishers,2002	

- 3. Essentials of Food & Nutrition by Swaminathan, Vol.1 & 2 (2012)
- 4. Marriott, Norman G. Principles of Food Sanitation, AVI, New York, 1985

CO/PO	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	1
CO2	3	2	3	3	2
CO3	3	2	3	3	2
CO4	3	2	2	2	2
CO5	3	2	2	2	2
CO6	3	2	2	2	2

Programme/Class: Certificate	Year: First	Semester: I
Subject: Food Science and Technolo	ogy	
Course Code:	Course Title: Food Biomolecules	

Course outcomes:

After successfully completion of this course, students will be able to:

- CO1; Summarize structural chemistry and general properties of lipids
- CO2: Distinguish the structure, classification and significance of carbohydrates
- CO3: Analyze the structure and properties of amino acids and proteins
- CO4: Evaluate the structure of nucleosides and nucleotides and stability of DNA backbone
- CO5: Illustrate the biosynthesis of purines and pyrimidines and structure as well as properties of DNA and RNA
- CO6: Summarize the structure, properties and significance of biological macromolecules

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0

Unit	Торіс	Total No. of Lectures (60)
Ι	Lipids	10
	• Structure and chemistry of fatty acids	
	• Saturated and unsaturated fatty acids	
	• General properties and structures of phospholipids,	
	sphingolipids and cholesterol	
II	Carbohydrates	15
	• Carbohydrate classification, Monosaccharides; D- and L-	
	designation, Open chain and cyclic structures	
	Structure and biological importance of disaccharides	
	Structural polysaccharides and storage polysaccharides	
III	Proteins	15
	Amino Acids	
	• Classification, Structure and Properties; Proteins:	
	Primary, Secondary structure	
	• Tertiary and Quaternary Structure; Biological functions	
	of proteins	
IV	Nucleic Acids	10
	• Nature of nucleic acids, Structure of purines and pyrimidines	
	Nucleosides and Nucleotides	
	• Stability and formation of phosphodiester linkage	
	Structure of DNA	10
V	• Biosynthesis of purines and pyrimidines	
	• Structure of DNA and RNA	
	Watson-Crick model, Types of DNA	

Suggested Readings:

- 1. Nelson D.L., and Cox M.M., *Lehninger Principles of Biochemistry*, 6th Edition. W. H. Freeman (2012).
- 2. Berg J.M., Tymoczko J.L., and Stryer L., *Biochemistry*, 7th Edition. W. H. Freeman(2010).
- 3. Voet D., and Voet J.G., *Biochemistry*, 4th Edition. Wiley (2010).

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	3	1	2
CO2	3	2	3	3	2	2
CO3	3	2	3	3	2	2
CO4	3	2	2	2	2	3
CO5	3	2	2	2	2	2
CO6	3	2	2	2	2	2

Programme/Class	: Certificate	Year: First S	Semester: I	
Subject: Food Scie	ence and Techr	nology		
Course Code:		Course Title: Food Technology Lab		
Course outcomes:				
After successful con	mpletion of this	course, students will be able to:		
• CO1: Demo	nstrate common	food testing techniques.		
• CO2: Explai	n the importanc	e of testing procedures for cereal and related j	products.	
• CO3: Analyz	ze and evaluate	the quality assessment of milk.		
• CO4: Explai	n the importanc	e of various chemicals preservatives in preser	rvation.	
• CO5: Discus	ss the macronutr	ient constituents of food products.		
• CO6: Analyz	ze the nutritiona	l constituents of different food products.		
Total No. of Lecture	s-Tutorials-Prac	tical (in hours per week): L-T-P: 0-0-3		
Unit		Торіс	Total	No. of
			Practi	ical (10)
I	Practical base green vegetab	d on effect of heat and pH on colorand textu les	re of	2
п	Practical related different samp	ed to estimation of gluten content present les	in a	2
III	Practical relate	ed to evaluation of milk products		2
IV	Practical relat vegetable bas	ed to development of different types of fruit ed products	t and	2
V	Practical related different food	ed to estimation of carbohydrates in samples		2
Suggested Readings	s: FSSAI Manual f	or Analysis for Food Products.		

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	3	1	2
CO2	3	2	3	3	2	2
CO3	3	2	3	3	2	2
CO4	3	2	2	2	2	3
CO5	3	2	2	2	2	2
CO6	3	2	2	2	2	2

Programme/Class	Certificate	Year: First	Semester: I
Subject: Food Scie	ence and Technol	logy	
Course Code:		Course Title: Food Biomolecules Lab	
Course outcomes:			
After successfully	completion of the	nis course students will be able to:	
• CO1: Ident	tify the food conf	aining starch.	
• CO2: Ident	tify the food cont	aining carbohydrate/sugar.	
• CO3: Ident	tify the presence	of fat and protein in food products.	
• CO4: Estir	nate the moisture	and ash content of food products.	
• CO5: Com	pare the differen	t food products on the basis of nutrients.	
• CO6: Expl	ain the principles	s of nutrition science.	
Total No. of Lectur	es-Tutorials-Pra	ctical (in hours per week): L-T-P: 0-0-3	
Unit		Торіс	Total No. of
			Practical (10)
I	Practical rela	ted to carbohydrate.	2
II	Practical relat	ed to presence of protein.	2
III	Practical rela	ted to presence of fat.	2
IV	Practical rela	ted to moisture and ash content.	2
V	Practical rela	ted to comparison of different food products.	2
Suggested Readin	gs:		I
1. Bevier, I. (1914). Food and	Nutrition Laboratory Manual. Boston: Whit	tcomb & Barrows.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	3	1	2
CO2	3	2	3	3	2	2
CO3	3	2	3	3	2	2
CO4	3	2	2	2	2	3
CO5	3	2	2	2	2	2
CO6	3	2	2	2	2	2

Programme/Class:	Certificate	Year: First	Semest	er: II
Subject: Food Scien	nce and Technol	ogy		
Course Code:		Course Title: Technology of Cereals, Pulses	s and Oi	lseeds
Course outcomes:				
After successfully c	ompletion of this	s course, students will be able to:		
• CO1: Explain the	e structural, nutr	itional and processing importance of wheat gr	rain.	
• CO2: Discuss pl advantages and c	hysicochemical lisadvantages.	properties of rice grain and importance of p	parboiliı	ng based on its
• CO3: Explain of	her important ce	reals and their processing aspects		
• CO4: Describe a	bout processing	of various pulses		
• CO5: Discuss ab	out oilseeds as v	vell as processing of vegetable oils and fats.		
• CO6: Discuss the	e nutritional con	position and processing of cereals, legumes a	and oilse	eeds.
Total No. of Lecture	es-Tutorials-Prac	tical (in hours per week): L-T-P: 4-0-0		
Unit		Торіс		Total No. of
				Lectures (60)
Ι	Wheat			15
	Introduction,	Structure and composition to cereals, pulse	s and	
	oilseeds. Whe	eat types, physicochemical characteristics, m	nilling	
	of wheat, qua	lity of flour and flour treatment. Additives us	sed in	
	bakery produ	cts -bleaching agents and flour improvers. B	akery	
	products :brea	ad, biscuits, cakes, extruded products (noodle	es and	
	pasta)			
II	Rice			15
	Physicochem	cal characteristics, Rice Milling; Parboilin	ng of	
	rice- traditior	al methods and their drawbacks. CFTRI pr	cocess	
	of parboiling	. Properties of parboiled rice. Changes d	luring	
	parboiling. A	dvantages and disadvantages of parboiling	, By-	
	products of r	ice milling. Rice aging and rice based proc	essed	
	products.			

III	Minor cereals	10
	Barley, Oats, Sorghum and Millets processing and their	
	important products. Corn milling wet and dry method; Corn	
	products: corn starch, flakes, and hydrolyzed syrups, corn flour,	
	corn oil and baby corn.	
IV	Pulses	10
	Types and processing of Legumes (Pulses) Storage and cooking	
	losses, sprouting of legumes for nutritional benefits.	
	Antinutritional factors in legumes and methods of removal.	
	Oilseeds	10
V	Processing- oil extraction/expression and solvent extraction.	
	Refining of crude oil- degumming, bleaching, deodorizations.	
	Preparation of protein concentrates and isolates and their use in	
	high protein foods. Hydrogenation and Interesterification,	
	Shortening-introduction, manufacturing and uses of shortening,	
	types of shortening. Margarine.	
Suggested Reading	s:	

- 1. Chakraverty, A. 1988. Postharvest Technology of Cereals, Pulses and oilseeds. Oxford and IBH, New Delhi.
- 2. Kent, N.L. 1983. Technology of Cereals. 3rd Edn. Pergamon Press, Oxford, UK.
- 3. Salunkhe, D. and Despande, S.S(2001) Foods of Plant origin : Production, Technology & Human
- 4. Nutrition An AVI Publications, New York.
- 5. Pomeranz, Y. 1987. Modern Cereal Science and Technology. VCH Pub., New York.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	3	1	2
CO2	3	2	3	3	2	2
CO3	3	2	3	3	2	2
CO4	3	2	2	2	2	3
CO5	3	2	2	2	2	2
CO6	3	2	2	2	2	2

Programme/Class: Certificate	Year: First	Semester: II			
Subject: Food Science and Technology					
Course Code:	Course Title: Technology of Fruits and Vegetables				

Course outcomes:

After successfully completion of this course, students will be able to:

- **CO1:** Understand the importance, canning and need of preservation for fruits and vegetables.
- CO2: Understand the processing and preservation of fruit juices.
- **CO3:** Understand the industrial method of making jam, jellies and marmalades.
- **CO4:** Understand the making of pickles, chutneys, sauces with processing of tomatoes and their various products.
- **CO5:** Understand the drying and dehydration methods of fruits andvegetables.
- **CO6:** Understand the processing technology of fruits and vegetables

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0

Unit	Торіс	Total No. of
		Lectures (60)
Ι	Introduction	15
	• Importance of fruits and vegetable; history and need of	
	preservation; Reasons of spoilage	
	• Method of preservation; Canning and bottling of fruits and	
	vegetables; process of canning; factors affecting the process-	
	time and temperature	
	• Lacquering syrups and brines for canning; spoilage in	
	canned foods, containers of packing.	
II	Fruit Beverages and products	15
	• Processing of fruit juices	
	• Preservation of fruit juices (pasteurization, chemically	
	preserved with sugars, freezing, drying, tetra packing,	
	carbonation)	
	• Processing of squashes, cordials, nectors, concentrates and	
	powder.	
III	Jams, jellies and marmalades	10
	• Jam: Constituents, selection of fruits, processing &	
	Technology	
	• Jelly: Essential constituents (Role of pectin, ratio); Theory	
	of jelly formation, Processing; defects in jelly	
TT 7	• Marmalade: Types, processing & technology, defects.	10
IV	Pickies, chutneys and sauces	10
	• Processing and types of pickles and chutney ;causes of	
	Tomato producto: Selection of tomatoes, pulping	
	Processing of tomato juice: tomato pureo: pasta	
	• Flocessing of tomato juice, tomato puree, paste,	
	Debydration of foods and vegetables	10
V	• Sun drying & mechanical dehydration	10
Ŧ	 Process variation for fruits and vegetables 	
	• Effects of dehydration on fruits and vegetables (Merits	
II III IV V	 Fruit Beverages and products Processing of fruit juices Preservation of fruit juices (pasteurization, chemically preserved with sugars, freezing, drying, tetra packing, carbonation) Processing of squashes, cordials, nectors, concentrates and powder. Jams, jellies and marmalades Jam: Constituents, selection of fruits, processing & Technology Jelly: Essential constituents (Role of pectin, ratio); Theory of jelly formation, Processing & technology, defects in jelly Marmalade: Types, processing & technology, defects. Pickles , chutneys and sauces Processing of tomato juice; tomato puree; paste, ketchup; sauce and soup Dehydration of foods and vegetables Sun drying & mechanical dehydration Process of dehydration on fruits and vegetables (Merits 	15 10 10 10

	/Demerits); packing and storage.	
Suggested Ro 1. Girdh ICAR	adings: arilal, Siddappaa, G.S and Tandon, G.L., Preservation of Fruits , New Delhi, 1998	& Vegetables,
2. Mana	7, S. & Shadaksharaswami, M., Foods: Facts and Principles, New Age Publi	ishers, 2004

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	3	1	2
CO2	3	2	3	3	2	2
CO3	3	2	3	3	2	2
CO4	3	2	2	2	2	3
CO5	3	2	2	2	2	2
CO6	3	2	2	2	2	2

Programme/Class	s: Certificate	Year: First	Semes	ster: II		
Subject: Food Sci	ence and Techi	ology	I			
Course Code:	urse Code:Course Title: Processing Technology of Cereals, PulsesLegumes and Oilseeds Lab					
Course outcomes:						
The student at the co	ompletion of the	course will be able to:				
CO1- Under	• CO1- Understand the importance of testing procedures for cereal and related products.					
CO2- Identi	fy the adulteration	on in cereals grains and legumes.				
CO3- Determ	mination of acid	and saponification value of oilseeds pro	ducts.			
CO4- Exper	iment on dehulli	ng and milling of cereals and legumes.				
CO5- Analy	sis of nutritional	composition of cereal, legumes and rela	ated product	ts		
CO6- Devel	opment of cerea	and legumes based food products.				
Total No. of Lecture	s-Tutorials-Prac	tical (in hours per week): L-T-P: 0-0-4				
Unit		Торіс		Total No. of		
	Practical (10					
I	Importance o products • Determ and leg	f testing procedures for cereal and nation of physicochemical properties imes.	d related of cereals	2		

II	Identify the adulteration in cereals grains and legumes	2				
	• Determination of foreign matter in food grains.					
	• Detection of kesari dal powder (Lathyrus sativus) in					
	Besan.					
III	Determination of acid and saponification value of oilseeds	2				
	• Determination of saponification value in oilseeds					
	Products.					
	• Determination of acid value in mustard oil.					
IV	Dehulling and milling of cereals and legumes	2				
	• Principles and methods of dehulling					
	• Dal milling process and visit to dal mill industry.					
V	Nutritional analysis of cereal, legumes and related products	2				
	• Estimate the crude fiber in cereal grains/legumes and related products					
	• Estimation of fat content in cereal/legumes and related products.					
VI	Production of cereal and legumes based food products	2				
	Production of fermented products from cereals/legumes					
	Production of soymilk					
Suggested Readin	gs:					
1. Serna-S	Saldivar, S. O. (2012). Cereal grains: Laboratory Reference and Proc	edures Manual.				
CRC P	ress.					
2. Nielser	n, S. S. (Ed.). (2003). Food Analysis Laboratory Manual (p. 557). New	v York: Kluwer				
Academic/Plenum Publishers.						

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	3	1	2
CO2	3	2	3	3	2	2
CO3	3	2	3	3	2	2
CO4	3	2	2	2	2	3
CO5	3	2	2	2	2	2
CO6	3	2	2	2	2	2

Programme/Class: Certificate	Year: First	Semester: II			
Subject: Food Science and Technology					
Course Code:	Course Title: Technology of Fruits and Vegetables Lab				

Course outcomes:

After successfully completion of this course students will be able to:

- CO1: Demonstrate common post-harvest management and grading techniques.
- CO2: Explain the importance of various chemicals preservatives inpreservation.
- CO3: Understand basic techniques used in the estimation of lycopene.
- CO4: Discuss the importance of microbiological analysis in fruits and vegetables.
- CO5: Identify the importance of the chemical composition of different varieties of fruits and vegetables intended for processing and processing conditions to the composition and properties of the product.
- CO6: Analyze the nutrient constituents of fruits and vegetables

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 0-0-4

Unit	Торіс	Total No. of
		Practical (10)
Ι	Practical based on post-harvest management and grading of foods.	2
II	Practical related to preservation of fruits by different methods.	2
III	Practical related to estimation of lycopene.	2
IV	Practical related to oxidative rancidity.	2
V	Practical related to development of value added new product.	2
Suggested Reading	S:	
I. Laboratory N	ianual in Food Preservation by Marion L. Fields, Avi Publishin	g Co Inc.: New

edition (December 1983).

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	3	1	2
CO2	3	2	3	3	2	2
CO3	3	2	3	3	2	2
CO4	3	2	2	2	2	3
CO5	3	2	2	2	2	2
CO6	3	2	2	2	2	2

Program	Programme/Class: Certificate		Year: Second	Semester: III			
Subject	Food Scien	nce and Technolo	gy				
Course	Code:		Course Title: Food Chemistry				
C	4						
Course	outcomes:						
After s	successful co	mpletion of this	course students will be able to:	1.0			
•	COI: Comp	brehend the basic	chemistry concept of carbohydrates, proteins a	nd fat.			
•	CO2: Devel	op idea for chem	istry of gums, polysaccharides for industrial pu	rpose.			
•	CO3: Differ	rent parameters u	se to evaluate carbohydrates, proteins and fat.				
•	CO4: Desc	ribe the concep	t of carbohydrate, as well as the identifica	tion of various anti-			
	nutritional f	actors found in f	pods.				
•	CO5: Differ	rentiation among	enzymes and enzyme activity				
•	CO6: Recog	gnize the importa	nce of food chemistry in food.				
Total N	o. of Lecture	es-Tutorials-Prac	ical (in hours per week): L-T-P: 4-0-0				
	Unit		Торіс	Total No. of			
				Lectures (60)			
	Ι	Carbohydrat	es	8			
		• Scope, Intr	oduction, Definition and Importance of Fo	ood			
		Chemistry	Chemistry				
		Carbohydra	Carbohydrates: Chemistry, classification, function				
		• Chemical	• Chemical and physical properties of carbohydrates,				
		pentosans, ma	pentosans, mannans and galactans, pectic substances, gums,				
		types of fil	pers, celluloses, hemicelluloses, soluble fibe	ers,			
		insoluble fiber	s and their important functions				
	II	Proteins and	Amino acids	15			
		• Types, ch	emical, physical and functional properties,	gel			
		formation					
		Protein der	naturation, Milk, Meat and Egg proteins: casei	ns,			
		whey prot	eins, Colostrums, elastin, meat tenderness a	ind			
		muscle pro	teins				
		• Egg white	proteins and egg yolk, Collagen				
	III	Lipids (oil an	d fats)	15			
		Classificati	on. Physico-chemical properties. Function	ns.			
		Oxidation	of Oils and Fats	,			
		ers.					
		Antioxidar	~ 7				
		Chemistry	and functional properties of pigments and flavo	our			
		compounds	s (flavonoids)				
	IV	Anti-nutritio	nal factors of foods	10			
	- 1	Enzyme	inhibitors, trypsin and chymotrypsin inhibit	or.			
		amylase	nhibitor	,			

	 Flatulence causing sugars, phytolectins and Allergens, toxic constituents Important chemical changes during storage and cooking of foods (plant and animal foods) 	
V	 Enzymes and starches Modified starches, resistant starches Gelatinization of starches, alpha amylase and beta amylase Enzymatic and non-enzymatic browning, reactions of aldehydes and ketones with amino compounds, caramelization, oxidative changes of polyphenols and their 	12
Suggested Readings	applications.	

1. Meyer, L.H. (1998) Food Chemistry, Van Nostrand, Reinhold Company Publication, New york, London.

2. Pomeranz, Y and Meloon, R. (1995) Food Analysis: Theory and Practice, Westport, An AVI Publication, New York, Sydney, Toronto.

3. Fennema, R.O (1997) Food Chemistry, Second Edition, Food Science & Technology series, Marcel Dekker, INC., New York

CO/PO	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	1
CO2	3	2	3	3	2
CO3	3	2	3	3	2
CO4	3	2	2	2	2
CO5	3	2	2	2	2
CO6	3	2	2	2	2

Programme/Class: Certificate	Year: Second	Semester: III			
Subject: Food Science and Technology					
Course Code:	Course Title: Unit Operations in Food Process	ing			

Course outcomes:

After successful completion of this course students will be able to:

- CO1: Identify cleaning methods and material handling systems for foods
- CO2: Describe size reduction and mixing unit operation of foods
- CO3: Apply different methods of filtrations and expressions of foods
- CO4: Describe high temperature preservation operations for foods
- CO5: Understand Low temperature preservation unit operations
- CO6: To have broader idea to the student about unit operations in food processing

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0

Unit	Торіс	Total No. of
		Lectures (60)
Ι	Design and Layout of food plant	8
	• Design and layout of food plants; Important considerations for	
	designing of food plants; Construction and design; Types of	
	layout	
II	Units and Dimensions	15
	• Dimensions – Primary and Secondary; Engineering Units –	
	Base Units, Derived Units and supplementary Units;	
	• System – State of a system,	
	• extensive and intensive properties; Density – Solid, Particle	
	and Bulk density; Phase diagram of water	
III	Fluid flow in food processing	15
	• Liquid Transport Systems- Pipes and Pumps; PUMPS-	
	Definition, classification, positive displacement and	
	centrifugal pumps	
	• factors affecting choice of a pump	
	• Properties of liquids - Density, Pressure, Surface tension and	
	Viscosity, Laminar and turbulent fluid	
	• The Continuity equation; Reynold's number	
IV	Thermodynamics and equilibrium	10
	• Conservation of mass- conservation of mass for an open	
	system and a closed system	
	• Thermodynamics – laws of thermodynamics, Equation of	
	state and Perfect Gas Law	
	• Energy – potential and kinetic energy	
	• Energy balance for a closed system and an open system,	
	total energy balance	
	Energy in Unit processes	12
V	• Generation of steam – Steam Generation System, Steam	
	Tables, Steam Utilization;	
	• Fuel utilization –Systems, Mass and energy balance analysis	

	,Burner efficiency;	
	• Electric Power Utilization – Electric Terms and Units,	
	Ohm's Law, Electric Circuits, Electric Motors, Electric	
	Controls and Lighting	
Suggested Readings	:	
1. Dincer, I. Heat T	ransfer Food Cooling Applications. Taylor and Francis Publishers, U	USA.
2. Heldman, D.R. a	nd Lund, D.B. Handbook of Food Engineering 2nd edition. CRC pro	ess, Newyork,
2007		

2007.3. Singh, R.P. Introduction to Food Engineering 3rd edition. Academic Press, London. 2004.

CO/PO	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	1
CO2	3	2	3	3	2
CO3	3	2	3	3	2
CO4	3	2	2	2	2
CO5	3	2	2	2	2
CO6	3	2	2	2	2

Programme/Class: Cert	ificate	Year: Second	Semester: III			
Subject: Food Science and Technology						
Course Code:	Course Title: Food Chemistry and Food processing Lab					
Course outcomes:						
After successful comple	etion of this	course students will be able to:				
• CO1: To educate	e the student	s on the significance, purpose and principle of	Food Chemistry			
• CO2: To estimate	te total car	bohydrates, protein, starch, ash, moisture co	ntent from different			
food samples						
CO3: To estimat	e reducing a	and non-reducing sugars from different food sa	amples			
• CO4: To underst	tand the met	hod for determination of pH and acidity from	different food samples.			
• CO5: To underst	tand prepara	tion of Primary and Secondary solutions.	•			
• CO6: To underst	tand method	of estimation of ascorbic acid in food samples	S			
Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 0-0-4						
Unit		Торіс	Total No. of			
			Lectures (60)			

Ι	General Laboratory Principles and Practices	10
	• Practical experience with laboratory equipment related to	
	food processing.	
	Cleaning of lab glassware and work areas	
II	Determining the nutritional composition of foods	15
	• Estimation of proximate constituents in a given food sample	
	• Determination of the starch content of food.	
	• Estimation of reducing and non-reducing sugars using a standard protocol	
III	Estimation of physicochemical properties of foods	10
	• Determination of pH and water activity in various food	
	samples	
	• Determining the acidity of a given food sample	
IV	Preparation of solutions.	15
	• Preparation of Primary and Secondary solutions.	
	• Preparation of Normal, Moral and diluted solution.	
V	Analysis of ascorbic acid and fat quality	10
	• To comprehend the method of estimating ascorbic acid in	
	food samples	
	• To calculate saponification value and percent free fatty acids.	
Suggested Readings	:	
1. Serna-Saldivar	r, S. O. (2012). Cereal Grains: Laboratory Reference and Procedure	es Manual. CRC
Press.		

CO/PO	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	1
CO2	3	2	3	3	2
CO3	3	2	3	3	2
CO4	3	2	2	2	2
CO5	3	2	2	2	2
CO6	3	2	2	2	2

Programme/Class: Certificate	Year: Second	Semester: III
Subject: Food Science and Technolo	Dgy	1
Course Code:	Course Title: Food Engineering Lab	

Course outcomes:

After successful completion of this course students will be able to:

- CO1: Understand the fundamentals of food science and food process engineering.
- CO2: Understanding the concepts of drying and osmotic dehydration in depth.
- CO3: Utilization of some thermal/non-thermal techniques for different food commodities.
- CO4: Understand the physical properties of food materials.
- CO5: Describe the engineering properties of food materials.

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 0-0-4

Unit	Торіс	Total No. of Lectures (60
Ι	 To get hands on experience on various aspects of food science and food process engineering. Determination of cooking properties of parboiled and raw rice. 	10
II	 Determination of rehydration ratio of dehydrated foods. Experiment on osmotic dehydration of foods 	10
III	Blanching and Freezing of Foods.Microwave heating of foods.	10
IV	 Determination of colour of food material Determination of Texture properties of food products. Evaluation of Rheological properties of foods 	15
V	 Calculation of bulk density Estimation of True density To determine the Surface area To determine the Porosity 	15

1. Singh, R. Paul and Heldman, R. Dennis.2004. Introduction to Food Engineering. 3rd Edition. Academic Press, London.

2. Kessler, H.G.1981. Food engineering and dairy technology. Verlag A. Kessler, Freising.

CO/ PO	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	1
CO2	3	2	3	3	2
CO3	3	2	3	3	2

CO4	3	2	2	2	2
CO5	3	2	2	2	2
CO6	3	2	2	2	2

Programme/Class: Certificate		Year: Second	Semester: IV	
Subject: Food Scien	ce and Technol	ogy		
Course Code:		Course Title: Dairy Technology		
Course outcomes:				
After successful co	mpletion of this	course students will be able to:		
• CO1: Discu	ss milk and its	nutritional value and apply total quality mana	gement systems into	
processes.				
CO2: Analy	ze the manufact	uring aspects of various dairy products.		
CO3: Explai	in the importance	e of utilization and manufacturing of dairy wast	e products.	
• CO4: Under	stand the impor	tance of fortification and enrichment in dairy ba	sed nutraceuticals.	
• CO5: Explai	in key functions	in production steps, standards and defects of va	rious dairy products.	
CO6: Review processing.	w potential app	lications and efficiency of various equipment u	used in dairy products	
Total No. of Lecture	s-Tutorials-Prac	ctical (in hours per week): L-T-P: 4-0-0		
Unit		Торіс	Total No. of	
			Lectures (60)	
I	Technology of	of milk and dairy products	8	
	Introduct	tion. Composition and Processing of mil	k:	
	Pasteuris	ation, sterilization, HTST and UHT processes	,	
	• TOM in	Dairy Industry, In-plant cleaning system		
II	Manufactu	ring of dairy products	15	
	Wanutactu	ing of daily products	10	
	Manufac	ture of condensed milk, milk powder, cheese, ic	e-	
	cream, b	utter, ghee, malted products, evaporated and drie	ed	
	products	, their evaluation and quality parameters,		
• Defects encountered during production, packaging and				
Ш	Substitutes	for milk and milk products	15	
	Casein a	nd caseinates lactose whey protein concentrat	res 10	
	and isola	tes, milk co precipitates, and other by-products.		
L	I			

IV	Fortification and enrichmentTechnology of baby foods, weaning foods, therapeutic	10
	foods;Fortification and enrichment of milk products.	
	Traditional dairy products processing	12
V	• Milk confections such as yoghurt, dahi, khoa, burfi, kalakand, gulabjamun, rosogolla, srikhand, chhana, paneer, ghee, lassi etc.	
Suggested Reading	js:	

1. Dey, S. 1994. Outlines of Dairy Technology. Oxford Univ. Press, New Delhi.

2. Aneja *et al.* 2002. Technology of Indian Milk Products. Dairy India Publ. De S.1980. Outlines of Dairy Technology. Oxford Univ. Press.

3. Walstra et al. 2006. Dairy Science and Technology. 2nd Ed. Taylor & Francis.

CO/PO	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	1
CO2	3	2	3	3	2
CO3	3	2	3	3	2
CO4	3	2	2	2	2
CO5	3	2	2	2	2
CO6	3	2	2	2	2

Programme/Class: Certificate	Year: Second	Semester: IV			
Subject: Food Science and Technol	logy	I			
Course Code:	Course Title: Technology of Meat, Po	ultry and Sea Foods			
Course outcomes:					
After successful completion of this	s course students will be able to:				
• CO1: Understand the curren	nt scenario of meat and poultry industry i	in India.			
• CO2: Learn the glossary of	live market terms for animals and birds.				
CO2. Understord the mass	• CO2: Understand the processing of most neultry and see foods				

- CO3: Understand the processing of meat, poultry and sea foods.
- CO4: Grasp knowledge of factors affecting meat quality and different preservation techniques.
- CO5: Value-addition to poultry and fish by-products.
- CO6: To learn the overall objective of meat Industry.

otal No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0					
Unit	Торіс	Total No. of Lectures (60)			
I	 Introduction Livestock and poultry population in India, Development of meat and poultry industry in India and its need in nation's economy, Glossary of live market terms for animals and birds. 	8			
Π	 Meat preservation and quality Effects of feed, breed and environment on production of meat animals and their quality Meat Quality-color, flavor, texture, Water-Holding Capacity(WHC), Preservation of meat Refrigeration and freezing, thermal processing- canning of meat, retort pouch, dehydration, irradiation, and RTE meat products, meat curing 	15			
III	 Slaughtering and Carcass Processing Modern abattoirs, typical layout and features, Antemortem handling and design of handling facilities Hoisting rail and traveling pulley system; stunning methods; steps in slaughtering and dressing; offal handling and inspection Operational factors affecting meat quality; effects of processing on meat tenderization; abattoir equipment and utilities. 	15			
IV	 Processing of Poultry Products Poultry industry in India; measuring the yields and quality characteristics of poultry products, Microbiology of poultry meat, spoilage factors; Lay-out and design of poultry processing plants, Plant sanitation; Poultry meat processing operations, equipment used – Defeathering, bleeding, scalding etc.; Packaging of poultry products, refrigerated storage of poultry meat, By products – eggs, egg products, Whole egg powder, Egg yolk products, their manufacture, packaging and storage. 	10			
V	 Fish and other Marine Products Processing Commercially important marine products from India; product export and its sustenance; Basic biochemistry and microbiology; Preservation of postharvest fish freshness; transportation in refrigerated vehicles; deodorization of transport systems; design of refrigerated and insulated trucks; Grading and 	12			

	preservation of shell fish;Pickling and preparation of fish protein concentrate, fish					
	oil and other by-products.					
Suggested Readings:						
1. Forrest JC. 1975. Principles of Meat Science. Freeman						
2. Govindan TK. 1985. Fish Processing Technology.						
3. IBH. Hui YH. 2001. Meat Science and Applications. Marcel Dekker.						

4. Kerry J. et al. 2002. Meat Processing. Woodhead Publ. CRC Press. Levie A. 1984.

CO/PO	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	1
CO2	3	2	3	3	2
CO3	3	2	3	3	2
CO4	3	2	2	2	2
CO5	3	2	2	2	2
CO6	3	2	2	2	2

Programme/Class: (Certificate	Year: Second	Semester: IV					
Subject: Food Science	Subject: Food Science and Technology							
Course Code:	Course Code: Course Title: Dairy Technology Lab							
Course outcomes:								
After successful con	npletion of this	course students will be able to:						
• CO1: Discuss	s milk and its nu	itritional value.						
• CO2: Evalua available in n	te an overview nilk.	of the major macro and micronutrients relevant	nt to human health					
CO3: Manufa	acturing and pro	cessing of various milk products						
CO4: Analys	is of milk safety	and microbial spoilage						
CO5: Applica	ation of Total Q	uality Management Systems into processes.						
• CO6: Unders	• CO6: Understand processing conditions for different dairy products.							
Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 0-0-4								
Unit	Unit Topic Total No. of							
	Lectures (60)							

I	• Plateform Tests of milk (COB, MBR Test, Alcohol Test,	8
	Sediment Test)	
	• Determination of SNF Content in Milk.	
II	• Determination of milk protein content	15
	• Determination of Fat content in Milk and Milk Products	
III	• Development of Yogurt and cheese	15
	• Development of Soy Tofu	
IV	• Determination of Titratable Acidity in Milk	10
	 Determination of Overrun in Icecream 	
	• Analysis of Adulteration in Milk and Milk products	12
V	• Quality Testing of Butter oil / Ghee	
Suggested Readings	:	
1. Ramesh	C. Chandan: Dairy-based Ingredients, Eagan	Press, 1997
2. Sukumar	De: Outlines of Dairy Technology, Oxford University	Press, 1980
3. Aneja, Mat	hur, Chandan & A.K.Bannerji: Technology of Indian Milk Produ	cts: Dairy India

Publication

CO/PO	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	1
CO2	3	2	3	3	2
CO3	3	2	3	3	2
CO4	3	2	2	2	2
CO5	3	2	2	2	2
CO6	3	2	2	2	2

Programme/Class: Certificate	Year: Second	Semester: IV			
Subject: Food Science and Technol	ogy	I			
Course Code: Course Title: Technology of Animal Foods Lab					
Course outcomes:					
After successful completion of this	course students will be able to:				
• CO1: Identify the quality parameters of egg.					
• CO2: Understand basic techniques to preserve meat and meat products.					
• CO3: Explain the importance of Crude fiber in daily life and how to analyses it from animal					

- CO3: Explain the importance of Crude fiber in daily life and how to analyses it from animal feed.
- CO4: Understand how to prepare standard solution and able to explain normality and Molarity.
- CO5: Analyze the microbial quality of meat and milk.

CO6: Estimation of physical properties of the animal products and industrial visit. •

Unit	Торіс	Total No. of Lectures (60)
Ι	• Determination of external and internal quality of poultry	8
	egg.	
	• To study the effect of time, temp on co-agulation	
	properties of egg.	
II	• Preparation of different types of meat products using	15
	different methods of preservation.	
	• Preservation and evaluation of different egg products	
III	• Practical related to fibre content of meat Estimation of	15
	total fibre content of meat	
	Practical related to solution preparation	
IV	• Estimation of bacterial numbers in a given sample of	10
	meat	
	• Estimation of yeast and mould numbers in a given	
	sample of meat	
	• Determination of microbiological quality of milk of	
	MBR test.	
	• Water holding capacity and colour of different meat type	12
V	• Moisture and protein content of different meat type	
	• Visit to meat, fish and poultry processing industries.	

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 0-0-4

1) Lawrie R A, Lawrie's Meat Science, 5th Ed, Woodhead Publisher, England, 1998

2) Parkhurst & Mountney, Poultry Meat and Egg Production, CBS Publication, New Delhi, 1997

3) Pearson & Gillet Processed Meats, 3 Ed, CBS Publication, New Delhi, 1997

4) Shai Barbut, Poultry Products Processing, CRC Press 2005

5) Stadelman WJ, Owen J Cotterill Egg Science and Technology, 4th Ed. CBS Publication New Delhi, 2002

CO/PO	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	1
CO2	3	2	3	3	2
CO3	3	2	3	3	2
CO4	3	2	2	2	2

CO5	3	2	2	2	2
CO6	3	2	2	2	2

Programme/Class: Certificate	Year: Third	Semester: V
Subject: Food Science and Technol	logy	
Course Code:	Course Title: Food Microbiology	
Course outcomes: After successful completion of this	s course students will be able to:	

- CO1: Identify microbes associated with food, their classification and factors affecting their growth
- CO2: Describe fermented foods and their microflora
- CO3: Compare food spoilage in different classes of food
- CO4: Examine and detect food-borne pathogens
- CO5: Recognize microbial destruction methods
- CO6: Develop an overall idea of food-borne microbes involved in beneficial and harmful activities and methods of influencing their growth and survival

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0

Linit	Tonio	Total No. of
Umt	Topic	Total No. of
		Lectures (60)
I	Microorganisms of Food	8
	History of Food Microbiology	
	• Microorganisms associated with foods. Bacteria, fungi,	
	viruses, protozoa, toxic algae. Microbial grouping in	
	practice.	
	• Extrinsic and Intrinsic Factors affecting Microbial Growth.	
II	Fermented and microbial foods	15
	• Fermented and microbial foods: Fermented Milk and milk	
	products, Single cell protein, Fermented fruits and	
	vegetables, Fermented fish, Fermented meats	
	• Fermented beverages- Beer, Vinegar and Wine	
	• Concept of Probiotics and health benefits	
III	Food Spoilage	15
	• Spoilage of different foods types- Cereal and its products,	
	• Vegetables, fruits, and its products,	
	• Milk and its products, meat and meat products, poultry,	
	fish and sea foods and Drinking water.	
IV	Diagnosis	10
	• Detection of food-borne organisms and diseases,	
	• Concept of Metabolically injured organisms their	

	examination,Bioassays for detecting microbes	
	Destruction of microorganisms	12
V	• Principles underlying the destruction of microorganisms,	
	• Destruction of microorganisms by physical and chemical	
	methods, Heating process, Irradiation, Low temperature	
	storage, Chemical preservatives, High-pressure	
	processing, Control of water activity.	
Suggested Reading	gs:	
1. Frazier, W. C.	and Westhoff, D. C. (2007) Food Microbiology. Tata McGraw H	lill Publishing

Company Ltd. New Delhi.

2. Adams, M. R. and Moss, M. O. (2005) Food Microbiology (Second edition). Royal Society of Chemistry Publication, Cambridge.

3. Jay, J.M. (2008) Modern Food Microbiology (Sixth Edition). Aspen Publishers, Inc. Gaithersburg, Maryland.

4. Ray, B. (2005) Fundamental food microbiology (Third edition). CRC Press, New York, Washington.

CO/PO	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	1
CO2	3	2	3	3	2
CO3	3	2	3	3	2
CO4	3	2	2	2	2
CO5	3	2	2	2	2
CO6	3	2	2	2	2

Programme/Class: Certificate	Year: Third	Semester: V
Subject: Food Science and Technol	ogy	I
Course Code:	Course Title: Principles of Food Preservation	
Course outcomes:		
After successful completion of this	course students will be able to:	
• CO1: Understand the princip	ples and methods of food preservation, thermal	processing equipment
and calculate adequacy of he	eat treatment.	
CO2: Demonstrate the p preservation by low tempera	rinciples, technology, industrial methods a ature	nd application of

- CO3: Understand the principles, technology, industrial methods and application of preservation by moisture removal
- CO4: Understand the principles, technology, industrial methods and application of preservation by irradiation and membrane technology
- CO5: Understand the uses and effects of chemical preservatives in food Industry with principle, mechanism and application of various novel techniques in food preservation
- CO6: Understand the various conventional and novel food preservation techniques

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0

Unit	Торіс	Total No. of
		Lectures (60)
I	 Principles of preservation Scope and importance of food processing, Historical developments in food processing. `Types of foods and causes of food spoilage. Principles and methods of preservation. Heat preservation and processing, heat resistance of microorganisms, thermal death curve, D, F and Z value, types of heat treatments and effects on foods, Canning of foods, cans and container types, spoilage of canned foods, heat penetration. 	8
Π	 Cold preservation Cold preservation and processing Requirement of refrigeration and Freezing, Difference between refrigeration and freezing, effect of low temperature on fresh food, storage changes in food during refrigerated storage. Freezing and frozen storage, Slow and quick freezing, Freezing curves, Freezing methods, factors determining freezing rate, changes in food during freezing, Frozen food storage. 	15
III	 Moisture reduction in Preservation Drying, Dehydration and concentration, Sun drying and solar dehydration, Drying methods Drying curves, and type of dryers Food concentration, Methods of concentration of fruit juices, Liquid food concentrates, Changes in food during dehydration and concentration. Water activity; Role of water activity in food preservation, Intermediate moisture foods (IMF), Principles, characteristics, advantages and problems of IM foods 	15
IV	 Irradiation Food Irradiation, Use of ionization radiations in food preservation, Sources, Units, effects, limitations, dose determination, safety and wholesomeness of irradiated 	10

	foods,	
	• Food irradiation techniques and recent applications of	
	irradiation in food preservation.	
	• Chemical Preservation, Uses and effects of class I and	
	class II preservatives in foods, membrane technology	
	Novel Techniques in Food Preservation	12
V	• Hydrostatic pressure, dielectric heating, microwave	
	processing,	
	• Hurdle technology- Properties, mechanism of heating,	
	Application in food processing and its effects on nutrients.	
Suggested Readin	ngs:	
4 37 375		

- 1. Norman, N.P and Joseph, H.H. (1997). Food Science, Fifth edition, CBS Publication, New Delhi.
- 2. Manay, S. & Shadaksharaswami, M. (2004). Foods: Facts and Principles, New Age Publishers.
- 3. B. Srilakshmi, (2002).Food science, New Age Publishers,
- 4. Kalia M. and Sangita, S. (1996): Food Preservation and Processing, First edition, Kalyani Publishers, New Delhi.
- 5. Sivasankar, B. (2002): Food Processing and Preservation, Prentice Hall of India Pvt. Ltd., New Delhi.

CO/PO	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	1
CO2	3	2	3	3	2
CO3	3	2	3	3	2
CO4	3	2	2	2	2
CO5	3	2	2	2	2
CO6	3	2	2	2	2

Programme/Class: Certificate	Year: Third	Semester: V
Subject: Food Science and Tech	nology	
Course Code:	Course Title: Waste Management i	n Food Industries
Course outcomes:		
After successful completion of	this course students will be able to:	
• CO1: Comprehend the ba	asic concept of waste and types.	
• CO2: Waste Disposal me	thod. Recognize the importance and	utility of
		-

• waste from food Industry

- CO3: Treatment of plant waste by physical, chemical and biological methods, Effluent treatment plants, Use of waste and waste water. Various hazards and their control measures.
- CO4: Types, availability and utilization of by-products of cereals, legumes & oilseeds, Utilization of by-products from food processing Industries.
- CO5: Status and utilization of dairy by-products. Industrial waste management
- CO6: Case study.

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0

Unit	Торіс	Total No. of
		Lectures (60)
Ι	Introduction:	8
	Classification and characterization of food industrial wastes from	
	fruit and vegetable processing industry, beverage industry, fish,	
	meat and poultry industry, sugar industry and dairy industry;	
	Economical aspects of waste treatment and disposal.	
II	Treatment methods for liquid wastes, Treatment methods from	15
	food process industries; Design of activated sludge process,	
	Rotating biological contactors, Trickling filters, UASB, Biogas	
	plant.	
III	Treatment methods of solid wastes, Biological composting,	15
	drying and incineration; Design of solid waste, management	
	system: Landfill digester, Vermicomposting pit.	
IV	Bio filters and bio clarifiers, Ion exchange treatment of waste	10
	water, Drinking-water treatment, Recovery of useful materials	
	from effluents by different methods.	
	Case studies ,Cane Sugar waste, molasses for alcohol, baggasse	12
V	for paper pulp, chemicals, bioethanol, cogeneration	

Suggested Readings:

1.Handbook of Waste management and co-product recovery in Food Processing - Vol.1- Keith Waldron

2. Food Industry Wastes: Disposal and Recovery; Herzka A & Booth RG; 1981, Applied Science Pub Ltd.

3. Water & amp; Wastewater Engineering; Fair GM, Geyer JC & amp; Okun DA; 1986, John Wiley & amp; Sons, Inc.

4. Wastewater Treatment; Bartlett RE; Applied Science Pub Ltd. 4. Symposium: Processing Agricultural & Municipal Wastes; Inglett GE; 1973, AVI.

5. Food Processing Waste Management; Green JH & amp; Kramer A; 1979, AVI.

CO/PO	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	1
CO2	3	2	3	3	2

CO3	3	2	3	3	2
CO4	3	2	2	2	2
CO5	3	2	2	2	2
CO6	3	2	2	2	2

Programme/Class: (Certificate	Year: Third	Semester: V
Subject: Food Science	e and Technolo	pgy	
Course Code:		Course Title: Food Engineering	
Course outcomes: After successful con CO1: Design CO2: Calcula CO3: Design CO4: Calcula balance of the CO5: Unders electrical ene CO6: Unders Total No. of Lectures	npletion of this the plant layou ate the various e and understand ate and underst e system. stand the stear rgy. tand the engine	course students will be able to: t. engineering units and engineering properties of for the liquid transport system according to flow be tand the conservation of mass, law of thermody n generation system, fuel utilization system a ering approach in food industry. tical (in hours per week): L-T-P: 4-0-0	oods. havior of food. ynamics and energy and various laws for
Total No. of Lectures	- I utorials-Prac	ucal (In hours per week): L-I-F: 4-0-0	
Unit		Горіс	Total No. of Loctures (60)
Ι	Design and La • Design for desi Types of	yout of food plant and layout of food plants; Important consideration igning of food plants; Construction and design; of layout	8 ons
Π	Units and D Dimens – Base System propert Phase c	Dimensions sions – Primary and Secondary ; Engineering Unit Units, Derived Units and supplementary Units; – State of a system, extensive and intensive ies; Density – Solid, Particle and Bulk density; liagram of water	15 its
III	Fluid flow • Liquid Definit centrifu Propert and V	in food processing Transport Systems – Pipes and Pumps; PUMPS ion, classification, positive displacement an igal pumps, factors affecting choice of a pump ies of liquids - Density, Pressure, Surface tensio fiscosity ; laminar and turbulent fluid; Th	15 G- d p; n e

	Continuity equation; Reynold's number	
IV	 Thermodynamics and equilibrium Conservation of mass- conservation of mass for an open system and a closed system; Thermodynamics – laws of thermodynamics, Equation of state and Perfect Gas Law; Energy – potential and kinetic energy Energy balance for a closed system and an open system, total energy balance. 	10
V	 Energy in Unit processes Generation of steam – Steam Generation System, Steam Tables, Steam Utilization ; Fuel utilization –Systems ,Mass and energy balance analysis ,Burner efficiency; Electric Power Utilization – Electric Terms and Units, Ohm's Law, Electric Circuits, Electric Motors, Electric Controls and Lighting. 	12
Suggested Reading 1. Dincer, I. Heat 7 2. Heldman, D.R. Newyork,	gs: Fransfer Food Cooling Applications. Taylor and Francis Publis and Lund, D.B. Handbook of Food Engineering 2nd edition	hers, USA. ion. CRC press,

2007.

3. Singh, R.P. Introduction to Food Engineering 3rd edition. Academic Press, London. 2004.

CO/PO	PO1	PO2	PO3	PO4	PO5
C01	3	2	3	3	1
CO2	3	2	3	3	2
CO3	3	2	3	3	2
CO4	3	2	2	2	2
CO5	3	2	2	2	2
CO6	3	2	2	2	2

Programme/Class: Certificate	Year: Third	Semester: V					
Subject: Food Science and Technology							
Course Code:	Course Title: Food Microbiology Lab						

Course outcomes:

After successful completion of this course students will be able to:

- CO1: Demonstrate common aseptic techniques used in microbiology Laboratory
- CO2: Illustrate the ubiquitous nature of microorganisms and how they can be isolated for study
- CO3: Describe basic principles of food microbiology and media preparation
- CO4: Understand basic techniques used in the observation and identification of microorganisms
- CO5: Recognize various bio-techniques in the enumeration of different compounds
- CO6: Development of various food products via microbial fermentation

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 0-0-4

T T •4	т. •	
Unit	Торіс	Total No. of
		Lectures (60)
I	 Introduction to basic microbiology Laboratory Practices and Equipment's Cleaning and Sterilization of glassware's 	8
П	Study of Compound MicroscopeCultivation and sub-culturing of microbes	15
III	Staining TechniquesPreparation of nutrient media	15
IV	 Standard Plate Count Method Yeast and Mould Count Method Estimation of Coliforms Count 	10
V	 Microscopic examination of microorganisms in food products Biotechnology and Industrial production of food products 	12

Suggested Readings:

1. Dubey, R. C., & Maheshwari, D. K. (2012). Practical Microbiology. S. Chand Pvt. Limited.

2. Pelczar, M. J., Chan, E. C. S., & Krieg, N. R. Microbiology. (1993). Tata McGrow Hill publication, New Delhi, India.

CO/PO	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	1

CO2	3	2	3	3	2
CO3	3	2	3	3	2
CO4	3	2	2	2	2
CO5	3	2	2	2	2
CO6	3	2	2	2	2

Programme/Class: Certificate	Year: Third	Semester: V
Subject: Food Science and Tech	nology	
Course Code:	Course Title: Food Preservation Lab	b
Course outcomes:		
After successful completion of t	his course students will be able to:	
• CO1: Understand the pri	nciples and methods of food preserv	ation, thermal processing
equipment and calculate a	dequacy of heat treatment.	

- CO2: Demonstrate the principles, technology, industrial methods and application of preservation by low temperature.
- CO3: Understand the principles, technology, industrial methods and application of preservation by moisture removal.
- CO4: Understand the principles, technology, industrial methods and application of preservation by irradiation and membrane technology.
- CO5: Understand the uses and effects of chemical preservatives in food Industry with principle, mechanism and application of various novel techniques in food preservation
- CO6: Understand the various conventional and novel food preservation techniques

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 0-0-4

T I •4	Transa.	T-4-1 Nf
Unit	Горіс	1 otal No. of
		Lectures (60)
Ι	 To study the various processing steps involved in food preservation. Principle and working of various food processing equipment's 	8
	• To check the adequacy of Blanching process	
II	• Osmotic concentration/dehydration of certain fruits and vegetables.	15
	 Extension of shelf life/ preservation of foods by use of low temperature. Preservation of foods by Freezing 	

III	• Preservation and processing of certain vegetables by	15
	drying and dehydration	
	• To study the concept of Asepsis and sterilization	
	• Processing and preservation of Peas by use of high	
	temperature.	
IV	• Preservation of fruit pulp with the help of Chemical preservatives	10
	 Determination of pH of different foods using pH meter. 	
V	Preservation of food via Pickling/ Salting/fermentation	12
v		
	• Use of technology for minimal processing for preservation of fresh foods	
	 Food preservation using novel processing technique 	
Suggested Readi	ngs:	
1. B. Srilakshmi,	Food science, New Age Publishers, 2002	
2. Meyer, Food C	hemistry, New Age, 2004	

- 3. Bawa. A.S, O.P Chauhan etal. Food Science. New India Publishing agency, 2013
- 4. Frazier WC and Westhoff DC, Food Microbiology, TMH Publication, New Delhi, 2004

CO/PO	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	1
CO2	3	2	3	3	2
CO3	3	2	3	3	2
CO4	3	2	2	2	2
CO5	3	2	2	2	2
CO6	3	2	2	2	2

Programme/Class: Certificate	Year: Third	Semester: VI			
Subject: Food Science and Technology					
Course Code:	Course Title: Food Biotechnology				

Course outcomes:

After successful completion of this course students will be able to:

- CO1: Understand the basic principles, application, safety, regulations and food authentication methods of food biotechnology.
- CO2: Understand fundamentals of downstream processing and biosensors in food industry
- CO3: Understand natural control of micro-organism and production with control of Aflatoxin
- CO4: Understand all about GMOs and Protein Engineering applications in food industry
- CO5: Understand the biotechnology and industrial production of different food product
- CO6: Biotechnology is tool for various quality measurements in food products like PCR, Immunological methods and DNA based methods. Biotechnology offers various purification operations for food products. Fermented food products manufacturing are based on biotechnology.

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0

Unit	Торіс	Total No. of
		Lectures
		(60)
Ι	Food Biotechnology	8
	• Introduction to Food Biotechnology, basic principles of	
	Gene technology and its application in food industry.	
	Food safety and biotechnology- Impact of	
	Biotechnology on foods. Real time PCR based methods	
II	Downstream processing	15
	• Principle and types of downstream processing of	
	food products, General types and stages in	
	downstream processing, Bacterial starter culture,	
	Methods of inoculation, media preparation, Slurry	
	processing and product isolation. Biosensors types	
	and applications in food processing.	
III	Industrial Application	15
	• Biotechnology and industrial production of	
	enzymes, beer, wine, amino acids, organic acids,	
	vitamins, baker's yeast, brewer's yeast and single	
	cell protein.	
IV	Other Applications of Bio-Technology	10
	• Applications of bacteriocins in food systems.	
	Various Fermentative Products .Other applications.	

	GMO	12
V	 Transgenic plants and animals: Current status of transgenic Plants and animals, methods, concept, risks regulation and application, Ethical issues. Protein engineering in Food technology –objectives, methods, limitations and applications (e.g. Lactobacillus, β-galactosidase, nisin and Glucose isometry) 	
	isoinerase).	

Suggested Readings:

- 1. VK Joshi and Ashok Pandey (1999). Biotechnology- Food fermentation, Volume 1&2 Educational publishers and Distributors.
- 2. Tombs, M.P. (1991). Biotechnology in Food Industry, Open University Press, Milton Keynes
- 3. Lee, B.H. (1996). Fundamentals of Food Biotechnology, VCH Publishers.
- 4. Schwartzberg, A & Rao (1990). Biotechnology & Food Process Engineering.

CO/PO	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	1
CO2	3	2	3	3	2
CO3	3	2	3	3	2
CO4	3	2	2	2	2
CO5	3	2	2	2	2
CO6	3	2	2	2	2

Programme/Class: Certificate	Year: Third	Semester: VI	
Subject: Food Science and Tech	nology	1	
Course Code:	Course Title: Research Methodology in Food Science		
Course outcomes: After successful completion of t	his course students will be able to:		
 CO1: Familiarization of v 	various research concepts in food Science		

- CO2: Knowledge in formulating research design, hypothesis and and selecting the research problem
- CO3: Identify and discuss the concepts and procedure of sampling, data collection.

- CO4: Identify , explain compare and prepare the key element of a research proposal and report
- CO5: Knowledge of data interpretation and data analysis.
- CO6: Demonstrate the knowledge of research process, research design and complete research hypothesis in research methodology.

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0

Unit	Торіс	Total No. of
		Lectures
		(60)
Ι	Basics of Research in Food Science	8
	• Exploration, Description, Explanation, Scientific	
	method and research, Research Designs –	
	Experimental and Observational, Quantitative and	
	Qualitative approaches Conceptualization and	
	Measurement, Variables, concepts and measurement.	
II	Sampling & Tools	15
	• Role of sampling in research, Types of sampling,	
	Research Tools and Techniques, Validity and	
	reliability, Interviewing and observational methods	
III	The Research Process	15
	• Defining the problem, research questions,	
	objectives, hypotheses, Review of related literature	
	and originality in writing, Planning the research,	
	Subjects context and ethics, Methodology and tools,	
	Citation formats: in medical sciences, social	
	sciences	
IV	Sampling Process	10
	• Exercise in sampling, random number table. Exercise	
	in designing tools and their analysis: interview,	
	questionnaire. 3. Data collection process: conducting	
	interviews, FGDs (FOCUS GROUP DISCUSSION).	
	Data Collection	12
V	• Levels of measurement, Units of analysis, Case	
	Studies. Results Interpretation	

Suggested Readings:

- 1) Kumar, R. (2005) Research Methodology: A Step by Step Guide for Beginners. Sage Publications, New Delhi.
- 2) Kerlinger F. N. and Lee, H.B. (2000) Foundations of Behavioural Research 4th Ed. Harcourt College Publishers
- 3) Kothari, C. R. (2008) Research Methodology: Methods and Techniques 2nd Ed. New Age International Pvt Ltd, New Delhi.
- 4) Black, J.A. & Champion, D. J. (1976) Methods and Issues in Social Research. New York: John Wiley and Sons.

CO/ PO	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	1
CO2	3	2	3	3	2
CO3	3	2	3	3	2
CO4	3	2	2	2	2
CO5	3	2	2	2	2
CO6	3	2	2	2	2

Programme/Class: Certificate	Year: Third		Semester: VI			
Subject: Food Science and Technology						
Course Code:	Course Code: Course Title: Food Safety and Regulation					
Course outcomes:						
After successful completion of th	is course students will be able	e to:				
• CO1: Understand general p	principles of food safety and h	ygiene.				
• CO2: Apply the food safety	y regulations					
• CO3: Recognize the nation	al food laws.					
• CO4: Understand the standardization	role of international	bodied dea	lingin			
• CO5: Recognize current co	oncerns for food safety					
• CO6: Prepare for working	in food industry and other foo	d laws governi	ing bodies.			
Total No. of Lectures-Tutorials-Pr	actical (in hours per week): L	-T-P: 4-0-0	-			

Unit	Торіс	Total No.
		of
		Lectures
		(60)
Ι	General Principles for Food Safety and Hygiene	8
	• Principles of food safety and quality -Food Safety	
	System - Quality attributes- Total Quality Management.	
	Introduction to Risk Analysis, Risk Management, Risk	
	Assessment, Risk Communication, CCP, Principles and	
	Implementation of HACCP. Traceability and	
	authentication, Certification and quality assurance.	
II	General Principles for Food Safety Regulation	15
	• The Structure of Food Law, Food Regulation, Laws and	
	Regulations to Prevent Adulteration and Cross	
	Contamination, Microbial Contamination, Hygienic	
	Practice, Chemical and Environmental Contamination,	
	Food Additives, Labelling.	
III	National Standards	15
	• PFA, FPO, MMPO, MPO, AGMARK, BIS,	
	Environment and Pollution Control Board, Trends in	
	Food Standardization, An Overview and structure of	
	9001:2000/2008, Clause wise Interpretation of ISO	
	9001:2000, An overview and Structure of 22000:2005.	
IV	International Bodies Dealing in Standardization	10
	• International Standardization Organization (ISO), Joint	
	FAO/WHO Food Standards Program. Codex	
	Alimentarius Commission (CAC), Other International	
	Organizations Active in Food Standard	
	Harmonization. Advantages of Utilizing International	
	Standards.	
	Recent Concerns	12
V	• Packaging, Product labelling and Nutritional labelling,	
	Organic foods, Newer approaches to food safety	
Suggested Reading	ngs:	
1. Lawley, R., Cu	rtis L. and Davis, J. The Food Safety Hazard Guidebook, RSC	publishing,
2004		
2. De Vries. Food	Safety and Toxicity, CRC, New York, 1997	
3. Marriott, Norm	an G. Principles of Food Sanitation, AVI, New York, 1985 4.	Forsythe, S
J. Microbiology o	f Safe Food, Blackwell Science, Oxford, 2000	

CO/ PO	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	1
CO2	3	2	3	3	2
CO3	3	2	3	3	2
CO4	3	2	2	2	2
CO5	3	2	2	2	2
CO6	3	2	2	2	2

Programme/Class: Certificate	Year: Third	Semester: VI
Subject: Food Science and Tech	nology	
Course Code:	Course Title: Food Enzymology	
Course outcomes:		
After successful completion of the	his course students will be able to:	
• CO1: Comprehend the bas	sic chemistry concept of enzymes and their	role.
• CO2: Develop idea for ch	emistry of enzymes action on food.	
• CO3: Different parameter and fat.	s use to evaluate enzyme activity in carbo	hydrates, proteins
• CO4: Various enzymes as	nd their role in food. Enzymes as Additive	es. Differentiation
among enzymes and enzy	me activity.	
• CO5: Recognize the imp understanding chemistry v	ortance and utility of Food enzyme chen with food.	nistry in food. Basic
• CO6: Food enzymes used	in food preservation and chemicals	
Total No. of Lectures-Tutorials-P	ractical (in hours per week): L-T-P: 4-0-0	
Unit	Торіс	Total No. of Lectures (60)
I Enzymes		8
Classific immobili (amylase	ation, properties, characterization, kinetics zation; fermentative production of enzy s, proteases, cellulases, pectinases, xylan	s and ymes pases.

	lipases) used in food industry and their downstream	
	processing.	
II	Enzymes in processing of food	15
	• Role of enzymes in baking (fungal α-amylase for bread	
	making; maltogenic α -amylases for anti-staling;	
	xylanses and pentosanases as dough conditioners;	
	lipases or dough conditioning; oxidases as replacers of	
	chemical oxidants; synergistic effect of enzymes);	
	enzymes in meat processing (meat tenderization) and	
	egg processing.	
III	Role of enzymes in fruit juices	15
	• Liquefaction, clarification, peeling, debittering,	
	decolourization); Enzymes in brewing: Enzymes in	
	malting and mashing, Enzymes for process	
	improvement, starch- haze removal. Other food	
	applications of enzymes: protein cross-linking and oil	
	degumming enzymatic approach to tailor- made fats.	
IV	Enzyme processing for flavours	10
	• Enzyme-aided extraction of plant materials for	
	production of flavours, production of flavour enhancers	
	such as nucleotides; flavours from hydrolyzed	
	animal/vegetable protein. Role of enzymes in cheese	
	making, whey processing.	
	Other applications	12
V	• Enzymes for production of protein hydrolysates and	
	bioactive peptides, maltodextrins and corn syrup solids	
	(liquefaction, saccharification, dextrinization,	
	isomerization for production of high-fructose-corn-	
	syrup), fructose and fructo-oligosaccharides. Enzyme	
	safety and regulations: Safe handling of enzymes,	
	possible health effects & control technology, regulations	
	of enzyme products.	
Suggested Reading	ngs:	
1. A Wiley- Inter	Science Publ. Kruger JE. et al. 1987. Enzymes and their Ro	le in Cereal
Technology. A	merican Association of Cereal Chemists Inc.	
2. Nagodawithana	a T & Reed G. 1993. Enzymes in Food Processing. Acade	emic Press.
Tucker GA & V	Woods LFJ. 1991. Enzymes in Food Processing.	
3. Whitehurst R &	& Law B. 2002. Enzymes in Food Technology. Blackwell Publ.	
4. Handbook of F	ood Enzymology Ed. by John R. Whitaker, Marcel Dekker, 200	3
5. Enzymes in Inc	dustry; Product & Applications Ed. by Wolfgang Aehle, Wiley-	VCH, 2004

CO/ PO	PO1	PO2	PO3	PO4	PO5
C01	3	2	3	3	1
CO2	3	2	3	3	2
CO3	3	2	3	3	2
CO4	3	2	2	2	2
CO5	3	2	2	2	2
CO6	3	2	2	2	2

Programme/Class: Certific	cate Year: Third	Semester: VI
Subject: Food Science and	Technology	I
Course Code:	Course Title: Food Biotechnology Lab	
Course outcomes:	i	
After successful completion	n of this course students will be able to:	
• CO1: Describe the b	asic biotechnology tool and techniques	
• CO2: Recognize the	method used for isolation and purification of n	ucleic acid
• CO3: Understanding	g the gel electrophoresis and molecular size determine	ination concept
• CO4:Understanding	the importance of quantification of protein	
CO5: Detailed study	' of assay (ELISA)	
• CO6: Describe the b	iotechnology techniques in details	
Total No. of Lectures-Tutor	ials-Practical (in hours per week): L-T-P: 0-0-4	1
Unit	Торіс	Total No.
		of
		Lectures
		(60)
I • Fe	bod biotechnology techniques (Basic rocedures, equipment's, safety and food samplin orage) ioinformatics (Food pathogens related -genes, r and single nucleotide polymorphism (SNP) ar sing online tools)	lab8ng andnarkernalysis

	and single nucleotide	polymorphism (SNP) analysis	
	using online tools)			
II	• Genomic DNA isolati	on and purification	from food	15
	samples			
	• Spectrophotometric	determination	(DNA	
	quantification	and	purity)	
	Primer designing & Pol	lymerase Chain React	ion (PCR)	

III	Agarose gel electrophoresis of DNA	15
	RFLP & DNA Molecular Size Determination	
IV	• Quantitative determination of Total proteins by	10
	Bradford method	
	Protein Molecular weight Determination	
	SDS- Polyacrylamide slab gel electrophoresis	12
V	Enzyme linked immunosorbent assay (ELISA)	
Suggested Reading	ngs:	

1. Smith, S. (2010). Food Biotechnology: Practical Manual. Deakin University.

2. Gutiérrez-López, G. F. (2003). Food science and food biotechnology. CRC press.

CO/PO	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	1
CO2	3	2	3	3	2
CO3	3	2	3	3	2
CO4	3	2	2	2	2
CO5	3	2	2	2	2
CO6	3	2	2	2	2

Programme/Class: Certi	ficate Ye	ar: Third	Sem	ester: VI	
Subject: Food Science ar	d Technology				
Course Code:	Course Title: Rese	earch Methodology L	ab		
Course outcomes.					
After successful comple	tion of this course students will	be able to:			
• CO1: Understand	ing the principles and methods	of scientific research			
• CO2: Acquire the	knowledge of approved metho	odology in the conduc	t of scientific	research	
• CO3: Acquire the	knowledge about presentation	of research data.			
• CO4: Understand	ing of the application of statist	ics to derive scientific	e results		
• CO5: Familiarize	students with descriptive statis	stics			
• CO6 Familiarize	students with statistical method	ls for data analysis			
Total No. of Lectures-Tut	orials-Practical (in hours per w	eek): L-T-P: 0-0-4			
Unit	То	oic		Total	No
	-			of	

		Lectures (60)
Ι	Significance, Purpose and Types of Research	8
	• Ethics in Research, Plagiarism	
	Research Design	
II	Sampling Methods and Scaling Techniques	15
	Research Tools and Methodology of Data Collection	
III	Tabulation of Research Data	15
	• Graphical Presentation of Data – use of Excel and	
	Statistical Software	
IV	Measures of Central Tendency – Mean, Mode	10
	• Measures of Variability – Range, Variance, Standard	
	Deviation and Standard Error	
	Measures of Relationships- Correlation and Regression	12
V	Analysis	
	 Measures of Shape – Skewness, Kurtosis 	
Suggested Readin	gs	

- 1. Krishnan V. 2011. Statistics for Beginners. Atlantic Publishers and Distributors (P) Ltd.
- 2. Jackson SL. 2012. Research Methods and Statistics: A Critical Thinking Approach. Fourth Edition. Wadsworth Cengage Learning.

CO/PO	PO1	PO2	PO3	PO4	PO5
C01	3	2	3	3	1
CO2	3	2	3	3	2
CO3	3	2	3	3	2
CO4	3	2	2	2	2
CO5	3	2	2	2	2
CO6	3	2	2	2	2